Multi-Objective Design Optimization of 100 kW Non-Rare-Earth or Reduced-Rare-Earth Machines

Pls Scott Sudhoff and Steve Pekarek, Purdue University, June 22, 2022 Project ID: elt248

Timeline and Budget

- Project Start: May 2019
- Project End: May 2024Percent Complete: 60%
- \$1.5M over 5 years; \$300k/year

Barriers and Targets

Electrical and Electronics Technical Team Roadmap October 2017

- Non-rare-earth machines as insurance policy against rare-earth magnet price volatility
- Improved materials (i.e. copper, steel) to cut costs in half and double reliability
- Understanding of system-level trade-offs (i.e. cost/performance impact of material substitution
- 50 kW/l; 5 kW/kg; \$3.3/kW
- 100 kW machine at 0.2 sqrt(m³ kg)

Partners

- · Oak Ridge National Laboratory
- · Sandia National Laboratories
- · University of Wisconsin
- · Illinois Institute of Technology
- NC State University

Relevance

Focus on achieving DOE performance objectives using under considered heavy-rare earth free machines.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Milestones

Milestone	Completed
DHAM-PMAC comparison (T)	6/32/21
ICM code complete (T)	9/30/21
ARM code complete (T)	12/30/21
Comprehensive evaluation (G/N)	3/31/22

Approach

- Compare machine classes for common specifications in terms of multi-objective design optimization
- Machines considered:

Permanent magnet ac (PMAC)
Asymmetrical reluctance machine (ARM)
Dual rotor homopolar ac machine (DHAM)
Inert core machine (ICM)

Common specifications:

ω _{rm} [rpm]	
Rating	Value
α_{CPSR}	3
$P_{\mathrm{mx},pk}(kW)$	100
$P_{\mathrm{mx},ct}(kW)$	55
$P_{\text{nom},ct}(kW)$	27.5
$\omega_{rm,mx}$ (rpm)	20,000
$\omega_{rm,crn}$ (rpm)	$\omega_{rm,mx}/\alpha_{CPSR}$
$\omega_{rm,nom} \ ext{(rpm)}^n$	$\sqrt{\omega_{rm,crn}\omega_{rm,mx}}$

Technical Accomplishments/Progress

DHAM Sample Design

Magnet type: NdFeB N52DF Stator steel: M15 Rotor steel: M15 EM active mass: 9.55 kg EM material price: \$95.30

ICM Sample Design

Magnet type: NdFeB N50 Stator: Duraform Rotor: Duraform EM active mass: 6.25 kg EM material price :\$385

Remaining Challenges/Barriers Vary by machine

- · ARM: Non-competitive
- ICM: Need to reduce cost
- P DHAM: Looks viable
 This machine does not yet exist
 Need to develop control system
 Need improved magnetic design model
 Need a prototype!

Planned Future Work

Year 4 (SOPO)

- Final design code revision
- Final design validation (FEA)
- Detailed design
- Machine pre-build

ICM Development

- Constructing machines with plastic cores
- Hardware validation of slot cooling
- Converter topology for low inductance
- DHAM Prototype
- 10 kW, 3600 rpm scale
- Build will start Summer 2022
- · Control algorithm
- · Time-domain simulation

DHAM Aircraft Applications (New Funding)

Summary

The DHAM is a viable and valuable technology for producing power dense, dysprosium free electric machines for vehicle applications. ICM is power dense, has nearly zero torque ripple, no magnet loss